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We study by means of Monte Carlo simulations the Kosterlitz-Thouless trans- 
ition for the two-dimensional, two-component plasma confined on a line. 
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1. I N T R O D U C T I O N  

Since the outstanding paper of Kosterlitz and Thouless ~ (KT) one has 
known that a two-dimensional Coulomb system, i.e., a system of particles 
of charge + e  and - e  interacting via a logarithmic potential +e21n r, 
exhibits a phase transition. This phase transition can be characterized by 

change in the conducting behavior of the system; at high temperatures 
it is conducting, whereas at low temperatures the system is a dielectric. 
The transition takes place at F = f l e 2 = 4  for low densities. Numerical 
simulations on the S_, sphere confirmed this result, tz) indicating that, as 
the density grows, the transition temperature tends to decrease. The 
renormalization group techniques predicted this dependence. ~3) It could be 
conjectured from the numerical results of ref. 2 that at very high densities 
the transition becomes first order. 

Several papers have been devoted to the study of the one-dimensional 
Coulomb system with a logarithmic interaction. ~4-7~ Using specific discrete 
models, it was possible to obtain exact results at F =  1, 2, and 4. c51 Various 
methods ~8~ indicated that the Kosterli tz-Thouless transition should occur 
at a value F =  2, independent of the particle density. In order to confirm or 
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invalidate this result, we performed Monte Carlo (MC) simulations of a 
one-dimensional Coulomb gas with a logarithmic interaction without any 
charge ordering, the model with charge ordering having been already 
studied, t9) At first, we planned to study the strip and then to go to the line 
limit. Tremendous numerical difficulties limited our investigations to the 
line case. 

Our paper is organized as follows: in Section 2 we introduce the model 
and a quantity needed to characterize the Kosterlitz-Thouless phase trans- 
ition. In Section 3 we present and discuss our MC results and, finally we 
state our conclusions in Section 4. 

2. T H E O R E T I C A L  C O N S I D E R A T I O N S  

On the two-dimensional sphere $2 we consider particles of charge ___e. 
On this surface the electrical potential, solution of the Poisson equation for 
a single charge, does not exist. Therefore, it is necessary to associate with 
each charge a neutralizing background of opposite total charge. We shall 
restrict ourselves to a system of N/2 hard disks of diameter tr and charge 
+ e  and N/2 particles of the same diameter and charge - e .  As a conse- 
quence, the neutralizing backgrounds will cancel each other. In this case, 
after solving the Poisson equation, the interaction energy between two 
particles of charge ei and ej on a sphere of radius R is t2'j~ 

V ( ~ ) = - e i e i l n  ( ~  sin ; )  (2.1) 

where L is an arbitrary length and a is the angle between the two particles. 
In the thermodynamic limit this system undergoes a phase transition, the 
celebrated Kosterlitz-Thouless phase transition. This transition is charac- 
terized by a change in the conducting behavior, which corresponds also to 
a modification in the long-range behavior of the correlation functions, t' L,2) 
At low temperatures the system is an insulator, whereas at high tem- 
peratures it becomes a conductor. A conducting system exhibits perfect 
screening in the sense that any infinitesimal external charge will be screened 
by the system. This can be characterized by various sum rules, t~31 notably 
by the Stillinger-Lovett sum rule. t~4'~51 Now in order to study the one- 
dimensional case, we shall consider particles compelled to lie on the 
equator of a sphere of radius R. Let us introduce in our system an external 
infinitesimal linear density of charge on the equator: 

Pex,(tP ) = e cos(lrp ) (2.2) 
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where 1 is an integer. Then the potential created on the equator by this 
distribution of the charge is 

rtRe 
~(~o ) = ---/- cos(l~o) (2.3) 

Now, if the system is conducting, it should screen perfectly this external 
charge. Using linear response theory, we get the excess charge density 
created by this external density of charge: 

p~xc(~0) = -fiR (13( ~o ) f ~(q~') q~(~o') d~o' ) 

- e f~(cp) _/~(r c o s ( / r  dcp' (2.4)  

where fl is the inverse temperature and ~(~o) is the microscopic charge 
density at angle ~0. We should have 

poxc(~p) = - p o x , ( ~ p )  = - e  c o s ( h o )  (2.5) 

SO 

f Pr cos(lop) dq~ = -rte (2.6) 

and 

= 1 (2.7) 

So, denoting by ei and ~o i the charge and position of the ith charge, 
respectively, we finally get ,]2/-- 

I eicos(l~oi m~ = 1 (2.8) 

It is also necessary to define the constant Eo to be added to the 
Hamiltonian, in order to fix the zero of energy. A convenient choice is 12~ 

Eo = ~'Iln(2) + 2 In R ] (2.9) 

where a is the size of the hard rods. 
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It will prove useful to calculate the analytical expression of the m~ 2 for 
a system of two particles of opposite charge 

F 
m ,  ~ = -f ( I-cos(/q~, ) - cos(l~02)32 ) 

where q~ and tp2 are the respective positions of the particles. If we define 
2 = ztpa/2, where p is the average macroscopic density of particles of both 
types, it is possible to derive the following expressions for, e.g., l =  1 and 3: 

~./2 duls inul  - r+2 ( sin 22'X 
m ; = F  -~/5~u i--~nu~_- ?- x .2  + ~-Z-~-_ ~ ~ (2.10a) 

2F -)  

m ; -  30z _2 )  

[9 ~./2 du Isin ul - r+2 + 16S~/Zdu I sin ul - r +6_ 24S7./2dulsin ul - r+ 4] 

~,~/2 du Isin u l - r  2 

( , ) x r c - 2 + g s i n  62 (2.10b) 

3. M C  S I M U L A T I O N S  

We present here the results of MC simulations performed in the 
canonical ensemble. We studied the two isochores p * =  (N/2nR)a=O.O1 
and p * =  0.1 for values of the coupling parameter ranging from F =  0.5 up 
to F =  3. We paid particular attention to finite-size effects by performing 
several series of simulations with different numbers N of particles (i.e., 
N =  50, 100, and 200). This study of the influence of N on the results was 
supplemented by the analytical results of Section 2 concerning systems of 
N = 2 particles. For each considered state we computed the internal energy 
flu and the fluctuations m~ (for l =  1, 2 ..... 5). 

In our first attempts we used the standard Metropolis algorithm ~16) 
and we encountered unexpected numerical difficulties linked with a very 
slow convergence of the simulation in the transition region. It may be 
useful to recall that in a standard MC simulation of a fluid system a trial 
configuration of the Markov chain is obtained by selecting a particle of the 
system and displacing it by amounts /Ix--for I D systems--randomly and 
uniformly distributed in the interval [ - r  +~] .  ~ is a parameter of the 
calculation chosen so as to ensure a rapid convergence of the simulation. 
Usually ~ is a fraction of some characteristic length attached to the system 
- - for  instance, a for dense, hard spheres. In the present case, however, a 



M C Simulations of Two-Component  Plasma 1 313 

finite proportion of positive and negative charges tend to form neutral 
dipolar pairs and the microscopic configurations of the system are charac- 
terized by two distinct characteristic lengths: the size of the dipolar clusters 
- -o f  the order of a - -on  one hand, and the mean distance between free par- 
ticles and (or) dipolar clusters in the other hand--of  the order of 1/p*. At 
the low densities considered in this work the latter is much larger than the 
former and the standard sampling procedure works badly. Indeed, in order 
to sample efficiently the clusters, one is led to choose a small value for 
(3 ~ a) and consequently the relative displacements of the free particles and 
the dipolar clusters are very slow. An unexpected consequence is that if the 
system happens to acquire a net polarization m = Y'.,. qiri in a given con- 
figuration of the Markov chain it takes thousands of MC steps to relax to 
a state of zero polarization. Moreover, in these polarized states the values 
of the internal energy flu and the order parameters m~ are strongly affected 
by the polarization and the convergence of these quantities toward their 
equilibrium values is very slow and demands a prohibitive amount of CPU 
time. 

In order to circumvent this difficulty, we developed a new algorithm 
very similar to the one used by Hansen and Viot in their MC study of the 
2D Coulomb gas of point charges ( F <  2). ~'7~ In our procedure the positive 
and negative charges are classified into neutral pairs periodically in the 
course of the calculation. Then we consider two types of trial displacements: 
let us call them "plasma" and "dielectric" displacements. A dielectric dis- 
placement concerns a pair and it is made in two steps: first, the two charges 
of the pairs are displaced by the same amount A x §  = , , i x  ~ I /p*,  and 
second one considers two small displacements A x +  = - - A x _  ~ tr aimed at 
sampling the dipole strength of the pair. A "plasma" displacement concerns 
individual particles and is defined as usual; it is aimed at breaking the pairs 
into free particles. The relative frequency of these two types of displacement 
was chosen so as to speed up the convergence of the calculations. For 
several points we checked that the results were indeed independent of the 
various parameters--a priori  displacements ~, relative frequency of the two 
kinds of displacements, etc.--of the simulation procedure. 

This new algorithm greatly facilitated the convergence of an MC 
simulation, but it did not remove all the numerical difficulties. Probably 
the difficulties are linked with the occurrence of an algebraic ( ~  1/r") decay 
of the correlation in the conducting phase as indicated by the theoretical 
prediction for discrete versions of the model. 14'5~ We observed that for the 
lowest considered density ( p * =  0.01) and for a few states in the transition 
region the system acquires spontaneously a net polarization at some step 
of the Markov chain and remains trapped in this polarized state during 
thousands of MC steps. Faced with this quasi-insurmountable difficulty, we 
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Table I. M C  Results for  the Isochore p*=0 .01"  

F N N~,(IO 5) flu m~ m i m i m]  m i 

0.5 50 3.5 0.898(1) 0.92 (2) 0.85 (1) 0.79 (I) 0.75 (1) 0.70 (1) 
0.5 100 1.0 0.896(9) 0.89 (6) 0.95 (5) 0.89 (4) 0.87 (3) 0.81 (3) 
0.5 200 0.5 0.904(1) 1.0 (1) 1.01 (7) 0.90 (4) 0.94 (4) 0.86 (3) 
0.7 50 2.5 1.113(1) 0.94 (2) 0.87 (1) 0.83 (1) 0.78 (1) 0.74 (1) 
0.7 100 1.0 1.113(1) 1.03 (9) 0.92 (5) 0.89 (4) 0.85 (4) 0.82 (2) 
1.0 50 2.5 1.300(2) 0.93 (2) 0.86 (1) 0.80 (1) 0.76 (1) 0.72 (1) 
1.0 200 0.5 1.308(2) 0.91 (8) 0.89 (6) 0.95 (5) 0.90 (4) 0.94 (8) 

1.1 50 2.5 1.322(2) 0.89 (2) 0.83 (2) 0.77 (1) 0.72 (1) 0.68 (1) 
1.2 50 2.5 1.324(3) 0.84 (4) 0.78 (3) 0.71 (2) 0.68 (2) 0.62 (1) 
1.2 200 1 1.331 (3) 0.97 (8) 0.93 (6) 0.89 (4) 0.87 (3) 0.84 (3) 
1.3 50 5.0 1.288(4) 0.73 (6) 0.65 (3) 0.60 (2) 0.56 (2) 0.53 (2) 
1.3 100 10.0 1.216(5) 0.28 (5) 0.52 (6) 0.56 (6) 0.52 (5) 0.49 (4) 
1.3 200 1.0 1,295(4) 0.42 (7) 0.7 (1) 0.8 (1) 0.8 (1) 0.79 (9) 
1.4 50 4.0 1,254(6) 0.58 (6) 0.59 (5) 0.51 (3) 0.49 (2) 0.46 (2) 
1.4 100 2.5 1,243(7) 0.19 (3) 0.51 (7) 0.60 (8) 0.52 (6) 0.43 (5) 
1.4 200 1.2 1.252(6) 0.30 (6) 0.39 (6) 0.58 (9) 0.51 (8) 0.6 (1} 
1.5 50 4.0 1.184(8) 0.29 (5) 0.37 (5) 0.37 (4) 0.36 (3) 0.34 (3) 
1.5 100 1.5 1.19 (1) 0.11 (2) 0.29 (6) 0.27 (4) 0,35 (5) 0.28 (5) 
1.5 200 30.0 1.046(2) 0.17 (3) 0.22 (3) 0.31 (3) 0,27 (2) 0.27 (2) 
1.6 50 20.0 1.098(5) 0.12 (2) 0.21 (3) 0,22 (2) 0.23 (2) 0.22 (3) 
1,6 100 1.0 1.13 (1) 0.06 (2) 0.11 (3) 0,19 (5) 0.15 (3) 0.19 (5) 
1.6 200 2.4 1,125(6) 0.038(3) 0.07 (1) 0.15 (2) 0.11 (2) 0.24 (3) 
1.7 50 5.0 1,048(9) 0.05 (2) 0.11 (2) 0.13 (3) 0.15 (2) 0.16 (2) 
1.7 200 1.2 1,105(9) 0.030(7) 7 ( I ) 1 0  -2 9(2)  10 -2 0.14 (2) 0.18 (3) 
1.8 50 5,0 0.959(9) 2 (1 )10  -2 4(2)  10 -2 5(2)  10 -2 6(2)  10 -2 8(2)  10 -2 
1.8 100 0,5 1.05 ( 1 ) ' ! . 5 ( 6 ) 1 0  -2 4 ( I ) 1 0  -2 2.6(7) 10 -2 7 (3 )10  -2 6(2)  10 -2 

1.8 200 1,8 1.015 (7) 0.010 (1) 0.031 (4) 0,038 (4) 0,036 (5) 0.032 (5) 
1.9 50 5.0 0.959(9) 3 ( I ) 1 0  -2 4 (1 )10  -2 5 (1 )10  -2 7(2) 10-" 8(2)  10 -2 
1.9 100 1.0 1.02 (1) 1.7(3)10 2 8{2) 10-2 9 ( 3 ) 1 0 - 2  0.11 (2) 0.15 (3) 
1.9 200 0.6 0.96 (1) 1.4(3)10 -3 6 (1 )10  -3 2.9(7) 10 -3 3 .5(7)10 -3 1.2(3)10 -2 
2.0 50 2.0 0.81 (I) 2 (1 )10  -3 311)10 -3 5(2)  10 -3 7(2)  10 -3 8(3)  10 -3 
2.0 100 1.0 0.98 (1) 6(2)  10 -3 3.8(9}10 -3 1.6(3)10 -2 1.0(2) 10 -2 2.4(6) 10 -2 
2.0 200 0.8 0.915(9) 8 ( I ) 1 0  -4 3.4(6) 10 -3 2.5(4) 10 -3 6 (1 )10  -3 3.7(9) 10 -4 
2.3 100 2.0 0.862 (8) 1.4 (2) 10 -3 1.8 (2) 10 -3 4.6 (7) 10 -3 3.7 (5) 10 -3 6.1 (8) 10 3 
2.3 200 0.5 0.83 (1) 2.3(6) 10 -4 6(3)  10 -4 4 (1 )10  -4 6{2) 10 -4 1.4(4) 10 -3 

2.5 I00 0.5 0.84 (2) 1.2(4) 10 -3 2,3(8) 10 -3 6 (1 )10  -a 2.7(6) 10 -3 5(2)  10 -3 
2.5 200 0,2 0,81 (1) 1,1(4) 10 -5 4(2)  10 -4 4 (1 )10  -4 712) 10 -4 6(2)  10 4 

" Ns, is the number of MC steps per particle, flu is the internal energy. The m~ ( /=  I ..... 5) are 
defined in Section 2. The accuracy of the calculation was estimated by dividing the total 
simulation into subruns of 2 x 10 3 MC steps. Standard deviations were obtained from the 
block average. The number in parentheses, which coresponds to two standard deviations, is 
the accuracy of the last digit(s). 
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decided to discard all these polarized states from the statistical averages. 
This drastic and unsound-- in  principle--procedure has in fact a very small 
influence on the numerical values of the internal energy flu and the fluctua- 
tions m~ for l > 2, but it affects more significantly the values of m~= ~. In all 
cases very, very long runs were necessary to obtain a reliable estimate of 
the quantities of interest. It is quite surprising, since one of the authors did 
not meet such convergence problems for the 2D version of the model. 12) 

The results of the simulations are summarized in Tables I and II, 
which correspond, respectively, to p * =  0.01 and p* =0.1. For the highest 
density and in view of the prohibitive demand in CPU time, it was not 
possible to make an extensive study of size effects and we considered only 
systems of N = 100 particles. Let us discuss now our results. 

3.1. p*-- 0.01 

As discussed above, the reported values for m ~  are probably not 
conclusive; for that reason we have displayed m~= 3 versus  F for various 
numbers of particles (N = 2, 50, 200) in Fig. 1. Despite very long runs, the 
error bars on the value of m~=3 are still large; however, the behavior of 
the curves clearly confirms the existence of the KT transition. At a given 
N the fluctuation m~= 3 is a rapidly decreasing function of F. At low F, 
m~=3~ I----except the case N = 2 ( ! ) - - a n d  the system is in a conductive 
phase. At high F the Stillinger-Lovett condition is not verified, m~= 3 ~ 0, 
and the system is in a dielectric phase made of tightly bound pairs of 
charges of opposite signs. The roughening of the transition due to finite-size 
effects deserves a detailed discussion. In the conductive phase and for 

Table II. M C  Results for the Isoehore p *=0 .1"  

F N,,( 10 5 ) /~,, m~ m~ m~ m] m~ 

I 1 0.642(2) 0.73(4) 0.64(2) 0.65(2) 0.67(1) 0.68(1) 
1.2 1 0.727 (3) 0.80 (7) 0.82 (3) 0.81 (2) 0.83 (2) 0.83 (3) 
1.4 0.8 0.748 (2) 0.70 (5) 0.69 (3) 0.72 (2) 0.73 (2) 0.75 (2) 
1.5 3 0.759(2) 0.72(4) 0.68(3) 0.69(2) 0.70(I) 0.72(I) 
1.6 4 0.767 (1) 0.67 (4) 0.67 (2) 0.67 (1) 0.67 (I) 0.69 (1) 
1.7 3 0.750(2) 0.54(5) 0.56(3) 0.56(2) 0.56(I) 0.57(1) 
1.8 2 0.750(3) 0.52(9) 0.48(3) 0.50(2) 0.52(2) 0.53(1) 
2 3 0.688 (3) 0.20 (5) 0.29 (5) 0.32 (3) 0.33 (2) 0.34 (2) 
2.1 4 . 0.692 (3) 0.17 (3) 0.27 (5) 0.29 (3) 0.31 (2) 0.33 (2) 
2.3 4 0.759 (6) 0.18 (4) 0.40 (7) 0.54 (9) 0.48 (7) 0.55 (6) 
2.4 4 0.748 (6) 0.14 (3) 0.23 (5) 0.32 (6) 0.40 (7) 0.43 (6) 

" See footnote to Table I for key. 
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F <  1.5, m~= 3 takes values significantly smaller than l and which are 
increasing functions of the number  N of particles. This is an expected 
result; perfect screening--corresponding to the theoretical value m~= 3 = l - -  
can only occur if the correlation length is much smaller than the size of the 
system, i.e., for very large systems near the critical point. As apparent  in 
Fig. 1, m~= 3 is a decreasing function of N for F >  1.6; this is an unexpected 
result. This striking feature is not compat ible  with a conductive phase for 
these values of F. Admittedly the large error bars on the value of m~=3 
make  illusory a quanti tat ive study of the N dependence, but, qualitatively, 
our  results are not  compat ible  with a K T  transition at F =  2. If one takes 
our MC results for granted and if one extrapolates them to N =  ~ ,  then 
m~= 3 behaves as a step function with a discontinuity at F ~  1.5-1.6. 

Similar conclusions can be drawn from a close examinat ion of our  
data for the fluctuations m],  l =  1, 2 ..... 5. However,  our  results for m~= ~ are 
affected by very large numerical uncertainties and therefore they are not 
very conclusive. For  low (/"~< 1.3) and large (F>~ 1.7) values of the coupling 

Fig. 1. 
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m 2 ~=3 versus F for various numbers of particles at p*=0.01. Crosses, N=2 [cf. 
Eq. (2.10a)]; squares, N= 50; diamonds, N= 200. 
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parameter all the configurations were retained and the results are not so 
bad. However, in the transition region 1.3 < F <  1.7 the system can remain 
trapped in polarized states, which led us to exclude about 10% of the 
configurations. This procedure has an important effect on the numerical 
values of m~= ~ and is therefore questionable; if one admits its validity, the 
curve of m~= ~ versus F is very similar to the curve displayed in Fig. 1 (for 
1=3). 

We conclude that at p*=0.01 our data are compatible with a KT 
transition at F ~  1.5-1.6. 

3 . 2 .  p *  = 0 . 1  

At this moderate density we still faced important numerical difficulties 
linked with a very slow convergence of the MC simulations. The MC pro- 
cedure still generates metastable polarized states, but this spurious effect is 
less pronounced than in the case p* = 0.01. For all the considered values of 

1.0 p'=0.1 
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0.4 

0.2 

0 .0  I i I 
1.0 1.5 2.0 2.5 

Fig. 2. 

F 

m~ versus F at p* =0.1 for a system of N =  100 particles. Crosses, l =  1; squares, 
I = 3; triangles, / = 5. 

822/74/5-6-24 
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F very long runs were necessary in order to obtain reliable values of the 
energy and the fluctuations m~ (1= 1 ..... 5). Our data are reported in 
Table II. In Fig. 2 we display the curves m~ versus F for l =  1, 3, 5 and 
N =  100 particles. For F~< 2 the three quantities are equal within the error 
bars, which is the expected behavior in a conductive phase. For F~> 2 the 
fluctuations depend on /, which is compatible with a dielectric phase. 
Therefore our results at p* =0.1 are compatible with a KT transition at 
F = 2. We find for the critical coupling constant a rather large deviation at 
p*=0.01  from the predicted value for zero density ( F = 2 ) ,  whereas at a 
higher density p*=0 .1  we recover this value. Furthermore, it would 
indicate that between p * =  0 and p* =0.01 the critical coupling constant 
decreases, as opposed to the two-dimensional case. This result is rather 
puzzling and we cannot draw any firm conclusions. 

4. CONCLUSION 

There is no contradiction between our results and the theoretical 
calculations. The system is a conductor at F =  1 and an insulator at F =  2. 
However, at the density p* = 0.01, despite tremendous numerical difficulties, 
and if one can analyze the finite-size and density effects correctly, our data 
seem to indicate a transition taking place at F ~  1.5. In fact a MC simula- 
tion in the canonical ensemble is probably not a very appropriate way to 
handle our model. Relaxation times toward the equilibrium are too long. 
A study in another statistical ensemble (for example, the grand canonical 
ensemble) could well be a more efficient method to obtain results. A recent 
work by Kitahara on the true one-dimensional Coulomb fluid reveals also 
the existence of very long relaxation times for this related model, c~81 
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